Commit 3ed94395 by Chiara Antonini

Upload new file

1 parent d1cfd128
%Function executed when the button COMPUTE MIRI in the second GUI (gui_MIRI) is
%pushed. It takes in input the handles of both GUIs and it computes MIRI of
%the selected variable. It plots boxplot of MIRI values and the pdf of the
%evaluation function of the chosen variable. It saves the following
%variables:
% 1) MIRIT is the array containing MIRI values of all realizations
% 2) mean_CloudMax is the array containing the mean of values in
% CloudCondMaxT. CloudCondMaxT is the array of the mode of parameter values
% that give rise to the upper tail of the evaluation function
% 3) mean_CloudMin is the array containing the mean of values in
% CloudCondMinT. CloudCondMinT is the array of the mode of parameter values
% that give rise to the lower tail of the evaluation function
% 4) pdf_eval_func contains values of the evaluation function in all
% realizations
% 5) pdf_param contains values of the conditional pdf of parameters in all
% realizations
function compute_MIRI(handles,hObject,handles1)
MIRIT=zeros(handles1.Nr,handles1.num_param);
CloudCondMaxT=[];
CloudCondMinT=[];
xbinT=[];
ks_y_T=[];
try
%create a directory to save all results
mkdir(handles1.folder,handles1.chosen_variable);
xbin_param=cell(2,handles1.Nr);
ks_param=cell(2,handles1.Nr);
h = waitbar(0,'Please wait...');
for k=1:handles1.Nr
waitbar(k/handles1.Nr,h,['Realization number ',num2str(k)]);
Results_reshape=zeros(handles1.Nsample,length(handles1.time_results));
for j=1:handles1.Nsample
Results_reshape(j,:)=reshape(handles1.AllResults{k,handles1.num_variable}{j,1},[1 length(handles1.time_results)]);
end
%creation of an object TimeBehavior where results of the chosen
%variable are stored
handles.Results=TimeBehavior(handles1.time_results,Results_reshape);
%values of the evaluation function are computed and stored in the
%TimeBehavior object Results
handles.Results.currentEvalFunc=handles.current_func;
handles.Results.computeEvalFunc();
guidata(hObject,handles);
samples=handles.Results.evalFuncValues;
% an evaluation function may have identical values when parameters
% do not affect its value. For example, if a variable has a
% descending temporal behavior, the maximum and time of maximum
% will always be the same, independently of parameter perturbation
if (length(unique(samples))==1)
ME=MException('Matlab:EvalFuncValuesNull','Array of evaluation function contains identical values. Change evaluation function or variable.');
throw(ME)
close(h)
end
%creation of an object pdfEstimator for estimating the pdf of the
%evaluation function
pdf_obj=pdfEstimator();
BinEdges=[min(samples):(max(samples)-min(samples))/length(samples):max(samples)];
[ks_y,xbin]=pdf_obj.evaluate_pdf(samples,BinEdges);
xbinT=[xbinT;xbin];
ks_y_T=[ks_y_T;ks_y];
%in addition to the pdf it is possible to plot the histogram of the
%evaluation function
fh = figure('Visible','off');
hist(samples);
xlabel(handles1.chosen_variable);
set(fh,'CreateFcn','set(fh,''Visible'',''on'')')
saveas(fh,fullfile(handles1.folder,handles1.chosen_variable,strcat('hist_',handles1.chosen_variable,'_Nr',num2str(k))),'jpeg');
close(fh)
%method for extracting the upper and lower tail of the evaluation
%function
handles.Results.currentTailMethod=handles.current_tm;
[XiMax,XiMin]=handles.Results.compute_tail(handles1.AllPerturbations{k,1},handles.tail_size);
%[XiMax,XiMin]=handles.Results.compute_tail(handles1.perturbation,handles.tail_size);
handles.XiMax=XiMax;
handles.XiMin=XiMin;
guidata(hObject,handles);
NcloudMax=size(handles.XiMax,1);
NcloudMin=size(handles.XiMin,1);
Ncloud=min([NcloudMax NcloudMin]);
%creation of an object MIRI for computing MIRI and conditional pdfs
%of parameters
obj_MIRI=MIRI();
[all_xbin_max,all_xbin_min,all_ks_max,all_ks_min]=obj_MIRI.estimate_parampdfs(handles1.nominal_p, handles1.AllPerturbations{k,1}, handles.XiMax, handles.XiMin);
%[all_xbin_max,all_xbin_min,all_ks_max,all_ks_min]=obj_MIRI.estimate_parampdfs(handles1.nominal_p, handles1.perturbation, Ncloud, handles.XiMax, handles.XiMin);
[MIRI_param,CloudCondMin, CloudCondMax]=obj_MIRI.MIRI_computation(all_ks_max,all_ks_min,all_xbin_max,all_xbin_min);
MIRIT(k,:)=MIRI_param;
CloudCondMaxT=[CloudCondMaxT;CloudCondMax];
CloudCondMinT=[CloudCondMinT;CloudCondMin];
mean_CloudMax=mean(CloudCondMaxT);
mean_CloudMin=mean(CloudCondMinT);
for ip=1:length(handles1.nominal_p)
xbin_param{1,k}(ip,:)=all_xbin_max(ip,:);
xbin_param{2,k}(ip,:)=all_xbin_min(ip,:);
ks_param{1,k}(ip,:)=all_ks_max(ip,:);
ks_param{2,k}(ip,:)=all_ks_min(ip,:);
end
end
close (h)
%MIRI boxplot (or bar if the realization is only one) are displayed in gui_MIRI
if handles1.Nr==1
bar(handles.axes1,MIRIT);
%set(handles.axes1,'XTickLabel',handles1.param_name);
% xticks=get(handles.axes1,'XTickLabel');
% xticklabel_rotate(xticks,90);
ylabel('MIRI');
else
boxplot(handles.axes1,MIRIT,'labels',handles1.param_name,'labelorientation','inline');
ylabel('MIRI');
labelSize = 13; %size of the label
set(findobj(handles.axes1,'Type','text'),'FontSize',labelSize);
end
fh2 = figure('Visible','off');
h_new2=copyobj(handles.axes1, fh2);
set(h_new2, 'Units', 'Normalized');
set(h_new2,'OuterPosition',[.1, .1, .85, .85]);
set(gcf,'Visible','off','CreateFcn','set(gcf,''Visible'',''on'')')
saveas(fh2, fullfile(handles1.folder,handles1.chosen_variable,'MIRI'),'jpeg');
close(fh2);
%saving results
disp('saving results...');
save(fullfile(handles1.folder,handles1.chosen_variable,'MIRIT.mat'),'MIRIT');
disp(strcat('Array of MIRI has size',{' '},sprintf('%.0f',size(MIRIT,1)),'x',sprintf('%.0f',size(MIRIT,2))));
disp('saving mode of the conditional upper pdf of the parameter vector');
save(fullfile(handles1.folder,handles1.chosen_variable,'meanCloudCondMax.mat'),'mean_CloudMax');
disp(strcat('The mode vector of the upper pdf has size',{' '},sprintf('%.0f',size(mean_CloudMax,1)),'x',sprintf('%.0f',size(mean_CloudMax,2))));
disp('saving mode of the conditional lower pdf of the parameter vector');
save(fullfile(handles1.folder,handles1.chosen_variable,'meanCloudCondMin.mat'),'mean_CloudMin');
disp(strcat('The mode vector of the upper pdf has size',{' '},sprintf('%.0f',size(mean_CloudMin,1)),'x',sprintf('%.0f',size(mean_CloudMin,2))));
disp('saving the probability density function of the evaluation function')
save(fullfile(handles1.folder,handles1.chosen_variable,'pdf_eval_func.mat'),'xbinT','ks_y_T');
disp('saving probability density functions of all parameters')
save(fullfile(handles1.folder,handles1.chosen_variable,'pdf_param.mat'),'xbin_param','ks_param');
%the evaluation function pdf is displayed in gui_MIRI
plotpdf_evalfunc(handles,hObject,handles1);
catch ME
if (strcmp(ME.identifier,'MATLAB:badsubscript'))
msg='The pdf is a Dirac delta function: change evaluation function or variable';
errordlg(msg);
close(h)
else
errordlg(ME.message);
close(h)
end
end
end
\ No newline at end of file \ No newline at end of file
Styling with Markdown is supported
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!